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Spectrum of single bunch longitudinal dipole modes

Nathan Towne and Jiunn-Ming Wang
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
(Received 6 October 1997

A mode of coherent longitudinal dipole motion of the beam in the National Synchrotron Light Source
(NSLS) vacuum ultraviole{vuv) ring with small frequency is observed by Biscaedial. [Rev. Sci. Instrum.
66, 1856(1995]. We point out in this paper that the coherent motion observed is, although a solution to the
well-known secular equation for Robinson instability, a distinct mode of beam dipole motion from what is
normally known as the Robinson mode. In this paper the mode’s properties and its relationships with the usual
Robinson mode are developed. The collision of the two modes is understood analytically and observed ex-
perimentally in the NSLS vuv rind.51063-651X98)12503-3

PACS numbd(s): 29.27.Bd

I. INTRODUCTION feedback is between two oscillators. For simplicity, we shall
consider only this case in this paper.
Biscardi, Ramirez, Williams, and Zimba found] in This paper is organized in the following manner. In Sec.

1995 that the quality of the infrared photon beam in thell we derive the characteristic equation for the frequency of
vacuum ultraviolet(vuv) ring of the National Synchrotron the coherent longitudinal dipole motion of the beam, first
Light Source(NSLS) is degraded by a longitudinal coherent more generally in theZ-transform space and then for the
motion of the electron beam at about 5 kHz or less. Theymore special case whef@To| <1, whereTo=27/w, is the
also found that the frequency of this coherent signal depend@Volution period and is the coherent frequency.
very much on the rf cavity detuning angle and thus they were_ N Sec. Il we apply Routh criterig7] to our model and
able to minimize the photon beam degradation by making thdnd that the two nontrivial threshold conditions are the
rf cavity operation point more capacitive. The behavior ofthreShOId cond|t|on_ _Of the resistive Roblnso_n 'nSt"f‘b'“ty _a}nd
this coherent mode remained a puzzle since the frequency ?e threshold CO”d!“OF‘ for the reactive Robmson_ '_”Stab"'ty-_
the normal Robinson instability equals approximately the_ cCause Routh Cme”‘? are necessary a_nd sufficient COf:IdI-
tions, we have to consider only the resistive and the reactive
synchrotron frequenc§2,3], and the synchrotron frequency
of the vuv ring is about 10 kHz or more. Furthermore, the

frequency of the Robinson mode in the vuv ring is known to 100 1
increase with beam curreft]. Figure 1 shows both the Rob- __
inson dipole and quadrupole modes together with this un-% aoH
usual mode. o
We point out in this paper that the coherent motion ob- §_ \ s o Podeh
served by Biscardet al. is a distinct mode of beam dipole g 60 |
motion from what is normally known as the Robinson mode ’é |
and yet this mode is also a solution to the well-known secu- §
lar equation[5,6] for Robinson instability. We will refer in & 40
this paper to the conventional Robinson mode as the “bearr-% ¥
Robinson mode” or the “beam mode” and to the second @ 20 k
mode as the “cavity Robinson mode” or the *“cavity f
mode.” We know from the work of Robinson that ttian- = MWW
gulan frequency of the beam mode approaches the synchro 0
tron frequencyws in the limit of vanishing average beam 10 Freq&gncy Oﬂseti%Hz) 40 50

current. On the other hand, the frequency of the cavity mode
approachedd +jI" in the same limit, wherd =hwg— w5

is the frequency detunind;=w,.4/2Q is the cavity reso-
nance mode damping ratey is the revolution frequency,

FIG. 1. Upper synchrotron sidebands of a rotation line for a
52-mA single bunch beam in the NSLS vuv ring. From top trace to
. . . bottom the cavity detunings are 2.5, 5.6, and 10.4 kHz below the
wres IS the cavity resonance frequency, amds the cavity generator frequency. The sidebands were observed on a spectrum

harmonic number. analyzer and the coherent motion was excited using a broadband

The beam coherent motion is associated with a feedback, ity driven by a tracking generator synchronized with the spec-
mechanism between the beam and the beam-induced electigym analyzer. The arrows show the progression of the two reso-

magnetic fields in the storage ring; the coupling of the two isnances arising from coherent dipole motion. The continuity of the
described by the beam impedangeor equivalently by its  resonances from trace to trace was verified using smaller incre-
Fourier transfornWV, the wake potential. If the rf cavity fun- ments of the cavity detuning. A quadrupole mode is also present at
damental mode is the only source of the impedance, then thel-kHz offset.
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TABLE I. NSLS vuv ring parameters used in the numerical —Eg)/E, just before the bunch crosses the cavity onpitls

examples shown in the figures. turn. Then the equations of motion are
Parameter Value bx— P—1=—27Tae, @

energy _ 0.744 GeV ek~ e=e[V(KTo+ m) —V,J/Eq, 2
momentum compactiona() 0.0245
revolution frequency ¢/27) 5.876 MHz where « is the momentum compaction facteV,, is the
peak operating current radiation energy per particle per turn, andt)=Vg(t)

multiple bunch operation 0.85 A (0910'% ") +Vp(1), with Vy being the generator voltage and, the

single bunch operation 0.4 A (0.43.0%") beam-induced voltagd/,, is, in terms of the wake potential,
energy loss per turne(v,) 14.4 keV w
rf harmonic numAberhj) 9 Vi(t)=—eN Z W(t—pTo— 7). @)
rf peak voltage V) 78 kV p=—o
incoherent synchrotron . . .

frequency () 2% 11.2 kHz To the leading order i), the above equations lead to
cavity R/Q 125/2) o
cavity Q 8460 Dr+1— 2kt py—1=— Tows¢k+2 Eq eN

k

Robinson coherent motiorfThe Robinson condition is the X ¢pW(kTO— pTy), @
condition that the coherent beam dipole motion loses phase p=—=
focusing. The component of the coherent voltage that is re- . h
active with respect to the beam current is responsible for
such phase focusing. ewza

For certain values of the current and the detuning,| wi= oy thv sin ¢y, (5

andA=A, the coherent frequencies of the beam mode and
the cavity mode may collide & =(). In Sec. IV the condi- where z//\, is the phase of the cavity voltage relative to the

tion for such a collision is investigated and the expressiongeam,V is the magnitude of the voltags is the time de-

for Q, A, and | are found. We present observational evi- rivative of W, and w4 is the incoherent synchrotron fre-

dence from the vuv ring of the collision. guency. Equatior(4) is a homogeneous linear equation of
Section V deals with loci of solutions of the characteristic ¢, . Setting¢, =z, we obtain

equation in the compleX} plane, each locus corresponding

to a given value ofA and a range of the beam curréniThe

locus corresponding th— A is referred to as the confluence

locus or the confluence curve. This curve passes thréugh

and it provides us with a convenient and visual means ofvhere the average beam currénteNwo/27. The summa-

classifying the beam and cavity modes. The Robinson cortion is theZ transform ofW.

dition for the beam and cavity modes in the vuv ring is  From now on, we consider the simplest case where the rf

discussed graphically. cavity fundamental mode is the only source of the imped-
All numerical examples in this paper are based on theance: Fort>0,

parameters of the vuv ring; the parameters are given in Table

|. Note that the total cavity voltage is kept fixed; as a result, W(t) = 2koCoswest exp(—T't), (7)

the incoherent synchrotron frequency is fixed at 11.2 kHz. A

detailed report describing the Robinson modes in the vuyvhere the loss factdk, is the product ofl” with the shunt

ring is given elsewhergs]. impedanceRs,,. In this case, th& transform ofW is a ra-

tional function ofz; Eq. (6) becomes

ea - .
z—-2+7 1'=-T} wi—E—lZ z7PW(pTy) |, (6)
0 p=0

*
C wC

- ®
: . - =% z-z¢]
First, we set up the equations for the coherent longitudinal

dipole motion of a bunch. Consider a pointlike bunch withwherez.=elcTo and the complex resonance frequengy
chargeeN moving on the orbitd=wot+ ¢(t), whered is  =w,+jI’. Additional rf modes add similar terms to the
the azimuthal angle describing the position around the ringight-hand side of Eq(8). Equation(8) is trivially converted
and ¢ is the bunch location relative to the synchronous po-+o a polynomial equation ia,
sition. We assume the rf cavity to be locatedat0, use the
notationt,=pTy+ 7,, WhereTo=27/w, is the revolution  z(z— 2+ 2 M+ Thwd)(2—20)(z—25)
period, for the instant the bunch passes the cavity opthts
turn, and let¢, be the value of¢ at this instant. Clearly, _Jko -|—0|Z [wi(z—25)— 0 (2-25)], (9)
$p=—woT,. Also define e, to be the value ofe=(E Eo

Il. CHARACTERISTIC EQUATION
FOR DIPOLE MOTION z-2+72 14 T202 —JkoE—TZIZ
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an equation that is valid for arbitrary detuning of the cavity.the imaginary part of) to the coefficients of the character-
In the case thatQTy|<1, to the leading order of this istic polynomial[10,11]. Routh criteria are necessary and

quantity Eq.(9) is equivalent to sufficient conditions for stability and are used here to iden-
tify all the possible unstable coherent modes.
(Q2=0d)(Q+A-][)(Q-A-[T)=1f(Q), (10) Stability criteria, conditions that require the imaginary
part of solutionx) of the equation
where
P(Q)=(jQ)*+a3(jQ)3+a,(jQ)%+a,(jQ)+ag=0
£(0)= — g Q=A== 0 (Q+A—jT)], (1D (Q)=(jQ) " +az(jQ) +ax(jQ) +ai(jQ)+ag 5

the frequency detuning =hwg— w5, andé=ekya/ToE,.  to be positive, are provided by Rouff]:

Sometimes the detuning ang® is used in place of; the

two quantities are related hy=TI"tan®. as>0, (169
The characteristic equatidf0) is quartic inQ) and there-

fore has four solutions. For small current, it gives (aga,—a1)/az>0, (16b)
Q=+ w+0(l) (12 aj(aza;—ay)/ag—azap>0, (160
for the beam mode and ay>0. (16d
Q=*xA+|I'+0(l) (13) Applied to the characteristic equatigh0), we have the as-
sociations

for the cavity mode.

The cavity mode can be understood as follows. When the az=2l, (179
bunch passes through the cavity, it excites, in addition to the 5 o 2
equilibrium voltage with frequenchiwg, a transient voltage a,=A+T"+ wg, (17b
[9] of frequency w,s With damping coefficient”. When )
these two components of the voltage act back on the bunch, a;=2I'(§l + wg), (179
the revolution harmonics of the beam are modulated\by ) 5 o 2
The modulated beam oscillation of frequertty,* A then Ao =28l(I'"~ el ) + (A™+ 1) w5 (179

feeds back on the cavity leading to the cavity Robinso
mode. The cavity voltage component with frequenay.
can also be excited by noise with a large bandwidth.

We end this section by discussing the symmetry proper
ties of the solutions of the characteristic equation. Since th

characteristic equatiofl0) represents a physical system, its . N
g (L0 rep phy y >250 A; since the ring is operated belal A we assume

luti tisfy th lit dition. This implies thaf)f . : . >
solutions satisfy the reality condition 'S tmplies fha that inequality(16b) is satisfied as well. We see below that

is a complex-valued coherent frequency, then se-Q*. o -~ e
The solutions appear in mirror-image pairs with respect tothe remaining condition¢16¢) and (16d) are conditions on

the imaginary axis unless they are pure imaginary. The chaut—he resistive and reactive Robinson instabilities.
acteristic equation must, as a consequence of this condition, o
have one of the following three forms: A. Resistive mode

We discuss here the coherent mode that can be unstable

"of the four conditions(16), two are quickly understood.
From Eq.(173, the inequality(164d is trivially satisfied. For
practical reasons, Ed16b) is of little concern. Using the
xpressions fog; in Eq. (17), we have— &l +A%2+1'2>0.
sing vuv numbers, this condition is satisfied unldss

P(0)=(Q~Q)(Q+07)(Q Q) (2 +03) (143 for a very small beam current, namely, the well-known re-
) ) . sistive mode. From Eq.13) the cavity mode is damped at
=(Q—jyo)(Q—jy)(2—Qy)(Q+07) (14 =0 by the damping coefficiert; therefore, from continu-
] ) ] ] ity, the mode cannot become unstable for very small current.
=(Q=jyo)(Q=jy)(Q=jy2)(Qjya), (1490 On the other hand, the beam mode is, from 84), neither

damped nor excited at vanishing current. To the leading or-
der ofl, the damping rat€),, Q=Qx+jQ,, of this mode
can be calculated from Egél0) and(11) as

where they’s are real and); and (), are not pure imagi-
nary. Form(144a represents solutions that appear in two con-
jugate pairs. One of the pairs, sdy; and—Q7 , will later
be identified with the cavity mode and the other pair with the Qe (- w§r2+ A2+ 2w,A)+0O(12), (18
beam mode. Forr(iL4b) represents the case where one of the
two modege.g., the cavity modebut not both, has two pure with positive proportionality coefficient. The stability condi-
imaginary coherent frequencies and the other mode haton is
conjugate-pair frequencies. Fort4o will not be discussed.
—02-T2+ A%+ 2w, A+0O(1)>0. (19
Il STABILITY For the vuv ring, this givea>8 Hz, a very small number
In this section we discuss the stability of the Robinsonsince the bandwidth 2 of the cavity resonance is-4
modes described by the characteristic equation. In doing s& 10*s. This explains why the vuv ring is operated capaci-
we draw upon the work of Routf¥] that relates the sign of tively (just like every other electron storage ripg.
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By routine substitution, the Routh inequalitt6c) re- Q- QF+Q,-Qf =ja,.
duces to
Since a;=2TI", this relation is equivalent to the following
2671 (— 03— T%+ A%+ 2A o5~ &1)>0. (200 simple but useful relationship between the imaginary parts of

the mode frequencies:
This inequality is seen to be the same as the stability condi-

tion (19) for the resistive mode. Qq+Qp=T. (23

To see when the mode collision happens, let us assume

B. Robinson condition — — —
that Q,=Q.=0=0g+jQ, when @A,1)=(A,1); we want

We are left with the conditior16d). This condition is

fairly obvious: If to solve forA, I, and Q. We first note that(), can be

y ) obtained simply from Eq(23). SinceQ, =Q.=Q, at the
a,=0, (21 collision point, we have, from this equation,

thenQ =0 is a solution of Eq(15). Since vanishing) im- O =r/2. (24)

plies vanishind?, , Eq.(21) is a threshold condition. Chang-

ing the current infinitesimally from the threshold current cor- To go on, let us write Eqc143 at the collision point as

responding to Eq(21), solving Eq.(15) perturbatively, and —(O— 020+ O*)2
usinga;>0, we find that the stability condition is given by PI)=(2- )0+ 29
Eq. (16d. Denotinga,=a,(A, 1) for n=0, 1, 2, and 3, we also have

Let us express this stability condition in terms of the de-the barred form of Eq(15
tuning angle®. Recallingl’ = w,.42Q and A=T"tan®, the 419,

stability condition can be written as P(Q)=(jQ)4+a_3(jQ)3+a_2(jQ)2+a_1(jQ)+a_0.
A 1 (26)
(1+ w,es) Sin 2iy—p| sin 20 = 60052@ >0, (22 Comparing the coefficients of Eq&5) and (26), we obtain

_ four equations for the’s in terms ofQ) and Q*. Elimina-
where the beam loading parameter tion of O and Q* from these equations leads to two con-

- ~o straints for the two variables and | :
p= I:’raldiation/Pcavity: IVcosyy, /(VEI2Rgy).

1 +w?)2—a,= 2
The Eq.(22) is a slightly modified Robinson condition. If (£1+0g)"~20=0 @7
the terms involvingA/w,es and 1Q in Eq. (22) are ignored, gnd
we obtain the original Robinson condition o o
A2=wl+2£1 . (29)

sin 2¢y,>p sin 20.

For the vuv ring, these two equations give two solutions
with positive current. The first one i5=20.27 mA and the
other is an impractical 18 A. We disregard the latter solu-
tion. For the former solutionA =70 208.6 rad/s. Compare
IV. COLLISION OF BEAM AND CAVITY MODES this with ws=70 208.0 rad/s. The near identity of these two

The beam mode and the cavity mode for small beam Curguantities is the result of the fact that the ratio of the term
rent| were defined in Sec. Il through Eq42) and(13: The ~ 2£1 of Eq. (28) to w3 is of the order ofl'/ o, which is
cavity mode is the mode whose frequenci®s(A,l) and generally very small for an electron ring. If we ignore this
—c.c. approach+A+jI" continuously when the beam cur- term, then the equation gives
rent approaches zero whilk is kept fixed. From the reality —
condition of the eigensolutions, a solution@t=A+jT" im- A= ws. (29

plies its image solution &=~ A +jI". Similarly, the fre- Continuation of this line of reasoning gives, in addition to

guenciesQ,(A,l) and —c.c. of the beam mode approach : L
* wg in the same limit. The same definition can be used forEqS'(Zg) and (24), the following results about the collision

a finite beam current without ambiguity provided the coher-pomt'
ent frequencies of the beam mode and the cavity mode do |Q—|=w (30)
not become degenerate when the current is increased. We s
find below that there is one and only one such collision pointgng
of the modegat a practical beam currerand the collision
can occur only when the cavity is capacitively detuned. |_:r2ws/2§wres_ (31)
We discuss form(14g of Sec. Il. Change the notation
0,— Q. and Q,—Q, to indicate, respectively, the cavity = The results of this section are crucial for visualizing later
mode and the beam mode. Comparing EG4a and (15), the behavior of the beam and cavity modes when the cavity
we have is detuned capacitively.

Since 7/2> y,>0, this mode is stable if the cavity is de-
tuned inductively, i.e.® andA are less than zero.
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FIG. 2. Sample data set of beam responses showing the two g, 3. Opservation of the collision of the beam and cavity
modes of coherent motion at a 52-mA beam current. The cavityzgpinson modes in the vuv ring. From top to bottom, the five traces
detunings for the traces are 13.1, 11.6, 10.0, and 8.8 kHz from togaye heam current and detuning 4/27)= (58 mA, 10.3 kHz),
to bottom, respectively. One resonance is offset less than 10 kHgp ma, 11.8 kHz), (31 mA, 11.3 kHz), (26 mA, 11.0 kHz), and
from the rotation line and becomes more distinct as the detunin@l mA, 10.8 kHz). Although the resonances are not clearly sepa-
becomes more negative. The other resonance appears above 10 Kidged as they are in Fig. 2, each of the traces was taken from a data
from the rotation line and becomes sharper as the detuning becomgg; similar to that figure where the modes were easily distinguished
more positive. The resonances have similar widths and heights ig; other detunings. In this figure the final stage of the collision is
the trace second from the bottom; similar traces at different currentgnown where the two modes merge together at a collision point
were assembled to form Fig. 3. between 26 and 21 mA.

We were able to observe the mode collision in the vuv . o ,
ring and verify that its location is close to the values deter-2Nd —83°, respectivelyin Fig. 4 since these curves are rep-
mined from Eqs(29) and(31). The responses of the beam as res_entatlve of the inductive case. The fine-dasheftimos)
a function of frequency to longitudinal excitation by a broad-Pair of curves corresponds td=27x-3.4 kHz, the
band cavity were taken at different detuning and current§oarse-dashed(centej curves correspond toA=2mX
approaching the collision point. Figure 2 shows a sample” 12-8 kHz, and the uneven-dashgiht-mos) curves cor-
data set taken at a current well above the collision poinf€Spond taA=2mX —28.0 kHz. The solid horizontal line in
where the real parts of the beam- and cavity-mode frequeril€ figure corresponds @,=1I". The cavity-mode frequen-
cies are well separated; the beam- and cavity-mode res&i€s (the broken lines on the upper half plarfall on this
nances are on both sidebands on either side of the 10-kH$€ atl =0 and move upwargbecome more dampegahith
offset from the rotation line(There is also a quadrupole increasing current. The beam-mode frequendibs broken
resonance at about 20-kHz offgethe collision must occur ~ curves on the lower half plapstart atws and move down-
when the widthgand heightsof the resonances are similar. ward (become increasingly unstablith increasing current.
In Fig. 3 traces taken from different data sets having differ-

ent detuning and currents approachidg () are assembled. 60 ',"/ ,’/ 7\ /
In the traces where the beam- and cavity-mode resonance ’ |
are not clearly separated, they were confirmed to be preserg 40 /" I’ \
by inspection of the original data sets, e.g., Fig. 2. Figure 3£ 20 et \ ~.
shows the merging of the two resonances near 10-kHz offsetg
a value neamws inferred from the location of the quadrupole & 0 3 T A T 20 55 30
. =] \ ~a
resonances and from the reduced cavity voltége kV). £ o0 [N .
Although data were not taken at beam currents below 21g o AN
mA, the collision appears to be between 26 and 21 mA. © -40 ‘\‘ N \\
-60 \\ \\ \
V. GRAPHIC REPRESENTATION . \\ \\
We discuss in this section the paramettizy(,€},) plot of Coherent Frequency (kHz)

the solutions of Eq(15). For each plotA (or equivalently _ .
) is fixed and the beam currehtis the parameter. These _ FIG. 4. Parametric plots on the compléxplane of solutions of
plots will be referred to as the solution curves or the solutiorEdS- (10 and(11) for the NSLS vuv ring with an inductively de-

loci. The examples considered are based on the vuv rin ned cavity. The beam current is varied along each curve; the
parémeters given in Table | rrows give the direction of increasing current. The solid horizontal

line corresponds t6),=I", the damping rate of the cavity rf mode.
The broken curves with negative damping rates are the beam-mode
frequencieq),, and the others are the cavity-mode frequen€lgs

It suffices to plot three examples correspondingAo  The three beam-mode, cavity-mode pairs are, from left to right, for
=27X—3.4,—-12.8, and—28.0 kHz @=—47°, —76°, A=27X—-3.4-12.8, and-28.0 kHz.

A. Inductive case®<0
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FIG. 5. Confluence curves on the compxyplane for the FIG. 6. Confluence curves on the comp@xplane for the

NSLS vuv ring where the cavity detuninj=A=27x11.2 kHz =~ NSLS vuv ring where the cavity detuning=A=27Xx11.2 kHz
(dashed curvgsand beam- and cavity-mode coherent frequenciegdashed curvgsand beam- and cavity-mode coherent frequencies
for A=27X3.2 kHz (solid curve$. The beam- and cavity-mode for A=2#7X17.7 kHz (solid curve$. The small dots mark beam-
collision point is the large central dot at&= | =20.3 mA. The current increments of 10 mA. The cavity damping rEtes marked
cavity-mode frequency approaches the collision from above, startwith the upper broken line at a damping rate 19.6/ms.

ing at Q=ws+jI", while the beam-mode frequency approaches, . . . oL - .
from below, starting af) = wg. The small dots mark beam-current ity mode moves towards the imaginary axis with increasing

increments of 10 mA. The cavity damping ratds marked with the ~ CU'Tent and eventually reaches the imaginary axis colliding
upper broken line at a damping rate 19.6/ms. with its own image. The pure imaginary collision points are
also represented by dots in the figures.

» . We now consider the case corresponding to Fig. 5 where
The condition(23) requires that the two modes cannot bothyhe heam current is further increased after the mode collision
become more unstable Wlth_lncreasmg current. It is also iMyn the imaginary axis; the case of Fig. 6 is similar. After the
portant to note that the cavity- and beam-mode frequenciegy|jision, the two coherent frequencies corresponding to the
are separated from each other by a gap located<afl0  cavity mode both become pure imaginary, no longer mirror
<I'. This explains why a collision point with negatidewas  jmages of each other; the characteristic polynomial will take

not found in Sec. IV. the form (14b). The two pure imaginary coherent modes af-
ter collision are depicted in Fig. 7; the black dot corresponds
B. Capacitive case®>0: Confluence curves to the collision point on the imaginary axis. We see from this

It was seen in the Sec. IV that there is a unique pair offigure that one of the coherent frequencies vanishes when
mode collision points&Tand —Q* that are not pure imagi- ~145 mA. This is the threshold current corresponding to the
nary. Such a mode collision occurs only for capacitive de-RoPinson condition(21). WhenA>A, it is the beam mode
tuning A= ws>0 and the current is given by E@1). The whose coherent frequency becomes pure imaginary for large
solution cur\s}es that pass through the collision p@tare current and the threshold current for the reactive instability is

: again given by Eq(21).
referred to as confluence loci or confluence curves. In terms Figure 8 plots the Robinson conditid@1), A againstl.

of the detuning angleA=I"tan®. . —
. — Th h-dotted | A=ws. Th t of
For the vuv ring,® =74.4° A= w,=27X11.2 kHz, and e dash-dotted line correspondsite: @s e parto

1=20.3 mA. In Figs. 5 and 6 the dashed curves are the 50
confluence curves and the central dots represent the colliso ¢+ .-
point ((g,{,). The dash-dotted lines again correspond to 40 e
Q=r. £ 30 T

These pictures require some additional explanation. The% el
confluence curves divide the regidag>0, 3,>0 in the 8 o0 /

—— \—.

complex plane into four regions. F&r>A (solid curve of & \
Fig. 6), the beam mode occupies the lower-left quadrant andg 10 N
the cavity mode occupies the upper-right quadrant. When thé SSaal
beam current increases, the damping raf of the beam 0 0.05 01 ‘0.75\\‘ 0.2 0.25
mode increases while that of the cavity mode decreasessuc |  TTs==al_ -

that the condition(23) is maintained. The real part of the
cavity-mode frequency increases with increasing current ana
that of the beam mode moves towards and eventually col- g5 7 Cavity-mode damping rate as a function of current
lides with its own image on the imaginafy axis. ForA <A showing a collision that occurs on the imaginary afteage doj,
(solid curve of Fig. %, the situation is just the opposite: The after which the conjugate mode frequencies split to form two un-
beam mode occupies the lower-right quadrant and the cavityqual imaginary frequencieslashed ling The detuningA=2x
mode occupies the upper-left quadrant. The locus of the cavwx< 3.1 kHz.

Beam Current (A)
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damping rate and detuning of order couple to the beam
sufficiently strongly to produce observable Robinson modes.

For inductive detuning, we showed that the beam mode
and the cavity mode do not mix since the beam mode occu-
pies the region(2,<0 in the complexQ) plane while the
cavity mode occupies the regidn,>I">0. For capacitive
detuning, we showed where a collision between the beam
and the cavity modétotal degeneragyoccurs and showed
how the confluence of the beam- and the cavity-mode-
solution loci around the total degeneracy point divides@®he
plane into beam- and cavity-mode regions. Data from the
vuv ring were presented that show the mode collision veri-
fying that it occurs at approximately the theoretical current
Beam Current (A) and detuning.

Although the stability thresholds of both the beam and the
cavity modes, in different kinematic regions, are given by the
same conditiori21) and instability is not an immediate prob-
lem, it is important in the vuv ring to choose an appropriate
the curve under the dash-dotted line correspondAmA_ range (.)f detuning S0 that the coherent mode does not cause

excessive perturbation on the photon beam. It should be

and therefore gives the threshold condition for the cavity ted that th h t mod f d i
mode. The threshold condition for the beam mode is givergO € at the coherent modes can carry on forced osciiia-

by the curve above the dash-dotted line. We see from thi '9ns driven by the ever present noise even below the insta-
figure that the lowest threshold currertl45 mA for the ility current threshold and thus affect the photon beam qual-

cavity mode occurs ak ~ 27X 3 kHz and the lowest thresh- iy, partu;ularly inarnng with noisy rf systems._
= In a ring with a highQ rf system, the coupling between

old current for the beam mode 280 mA occurs aA=A b peam synchrotron motion and the cavity resonance mode
=2mx11.2 kHz. is intimate, even at low current. As such, even though a
perturbative method can be useful for estimating the thresh-
VI. CONCLUSION old of a coherent instability, it is not very useful in the cal-
culation of the actual coherent frequency. Direct solution of
guations like Eq(6) or (10) is necessary for determining
e mode frequency reliably.

Detuning (kHz)

0.2 0.4 0.6 0.8 1

FIG. 8. Threshold conditiomy=0 for the reactive Robinson
instability constraining currenit and detuningA. The dash-dotted
line corresponds ta =A. The shaded region is unstable.

In this paper we have described the properties of the lon
gitudinal dipole modes when the impedance responsible i
that of a cavity resonance mode and made a distinction b

tween the beam Robinson mode and the cavity Robinson
mode. The behavior of each of these modes was described in ACKNOWLEDGMENT
terms of the solution locus corresponding to a givermand This work was performed under the auspices of the U.S.

varyingl. In principle, there is a cavity mode associated withDepartment of Energy under Contract No. DE-ACO02-
each cavity rf mode in the ring, although only rf modes with 76 CH00016.
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