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Spectrum of single bunch longitudinal dipole modes

Nathan Towne and Jiunn-Ming Wang
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973

~Received 6 October 1997!

A mode of coherent longitudinal dipole motion of the beam in the National Synchrotron Light Source
~NSLS! vacuum ultraviolet~vuv! ring with small frequency is observed by Biscardiet al. @Rev. Sci. Instrum.
66, 1856~1995!#. We point out in this paper that the coherent motion observed is, although a solution to the
well-known secular equation for Robinson instability, a distinct mode of beam dipole motion from what is
normally known as the Robinson mode. In this paper the mode’s properties and its relationships with the usual
Robinson mode are developed. The collision of the two modes is understood analytically and observed ex-
perimentally in the NSLS vuv ring.@S1063-651X~98!12503-5#

PACS number~s!: 29.27.Bd
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I. INTRODUCTION

Biscardi, Ramirez, Williams, and Zimba found@1# in
1995 that the quality of the infrared photon beam in t
vacuum ultraviolet~vuv! ring of the National Synchrotron
Light Source~NSLS! is degraded by a longitudinal cohere
motion of the electron beam at about 5 kHz or less. Th
also found that the frequency of this coherent signal depe
very much on the rf cavity detuning angle and thus they w
able to minimize the photon beam degradation by making
rf cavity operation point more capacitive. The behavior
this coherent mode remained a puzzle since the frequenc
the normal Robinson instability equals approximately
synchrotron frequency@2,3#, and the synchrotron frequenc
of the vuv ring is about 10 kHz or more. Furthermore, t
frequency of the Robinson mode in the vuv ring is known
increase with beam current@4#. Figure 1 shows both the Rob
inson dipole and quadrupole modes together with this
usual mode.

We point out in this paper that the coherent motion o
served by Biscardiet al. is a distinct mode of beam dipol
motion from what is normally known as the Robinson mo
and yet this mode is also a solution to the well-known se
lar equation@5,6# for Robinson instability. We will refer in
this paper to the conventional Robinson mode as the ‘‘be
Robinson mode’’ or the ‘‘beam mode’’ and to the seco
mode as the ‘‘cavity Robinson mode’’ or the ‘‘cavit
mode.’’ We know from the work of Robinson that the~an-
gular! frequency of the beam mode approaches the sync
tron frequencyvs in the limit of vanishing average beam
current. On the other hand, the frequency of the cavity m
approachesD1 j G in the same limit, whereD[hv02v res
is the frequency detuning,G[v res/2Q is the cavity reso-
nance mode damping rate,v0 is the revolution frequency
v res is the cavity resonance frequency, andh is the cavity
harmonic number.

The beam coherent motion is associated with a feedb
mechanism between the beam and the beam-induced ele
magnetic fields in the storage ring; the coupling of the two
described by the beam impedanceZ or equivalently by its
Fourier transformW, the wake potential. If the rf cavity fun
damental mode is the only source of the impedance, then
571063-651X/98/57~3!/3461~7!/$15.00
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feedback is between two oscillators. For simplicity, we sh
consider only this case in this paper.

This paper is organized in the following manner. In Se
II we derive the characteristic equation for the frequency
the coherent longitudinal dipole motion of the beam, fi
more generally in theZ-transform space and then for th
more special case whereuVT0u!1, whereT052p/v0 is the
revolution period andV is the coherent frequency.

In Sec. III we apply Routh criteria@7# to our model and
find that the two nontrivial threshold conditions are t
threshold condition of the resistive Robinson instability a
the threshold condition for the reactive Robinson instabili
Because Routh criteria are necessary and sufficient co
tions, we have to consider only the resistive and the reac

FIG. 1. Upper synchrotron sidebands of a rotation line for
52-mA single bunch beam in the NSLS vuv ring. From top trace
bottom the cavity detunings are 2.5, 5.6, and 10.4 kHz below
generator frequency. The sidebands were observed on a spec
analyzer and the coherent motion was excited using a broadb
cavity driven by a tracking generator synchronized with the sp
trum analyzer. The arrows show the progression of the two re
nances arising from coherent dipole motion. The continuity of
resonances from trace to trace was verified using smaller in
ments of the cavity detuning. A quadrupole mode is also presen
21-kHz offset.
3461 © 1998 The American Physical Society
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3462 57NATHAN TOWNE AND JIUNN-MING WANG
Robinson coherent motion.~The Robinson condition is the
condition that the coherent beam dipole motion loses ph
focusing. The component of the coherent voltage that is
active with respect to the beam current is responsible
such phase focusing.!

For certain values of the current and the detuning,I 5 Ī
and D5D̄, the coherent frequencies of the beam mode
the cavity mode may collide atV5V̄. In Sec. IV the condi-
tion for such a collision is investigated and the expressi
for V̄, D̄, and Ī are found. We present observational e
dence from the vuv ring of the collision.

Section V deals with loci of solutions of the characteris
equation in the complexV plane, each locus correspondin
to a given value ofD and a range of the beam currentI . The
locus corresponding toD→D̄ is referred to as the confluenc
locus or the confluence curve. This curve passes througV̄
and it provides us with a convenient and visual means
classifying the beam and cavity modes. The Robinson c
dition for the beam and cavity modes in the vuv ring
discussed graphically.

All numerical examples in this paper are based on
parameters of the vuv ring; the parameters are given in T
I. Note that the total cavity voltage is kept fixed; as a res
the incoherent synchrotron frequency is fixed at 11.2 kHz
detailed report describing the Robinson modes in the
ring is given elsewhere@8#.

II. CHARACTERISTIC EQUATION
FOR DIPOLE MOTION

First, we set up the equations for the coherent longitud
dipole motion of a bunch. Consider a pointlike bunch w
chargeeN moving on the orbitu5v0t1f(t), whereu is
the azimuthal angle describing the position around the r
andf is the bunch location relative to the synchronous p
sition. We assume the rf cavity to be located atu50, use the
notation tp5pT01tp , whereT052p/v0 is the revolution
period, for the instant the bunch passes the cavity on itspth
turn, and letfp be the value off at this instant. Clearly,
fp52v0tp . Also define ep to be the value ofe[(E

TABLE I. NSLS vuv ring parameters used in the numeric
examples shown in the figures.

Parameter Value

energy 0.744 GeV
momentum compaction (a) 0.0245
revolution frequency (v0/2p) 5.876 MHz
peak operating current

multiple bunch operation 0.85 A (0.931012e2)
single bunch operation 0.4 A (0.4331012e2)

energy loss per turn (eVg) 14.4 keV
rf harmonic number (h) 9

rf peak voltage (V̂) 78 kV

incoherent synchrotron
frequency (vs) 2p311.2 kHz

cavity R/Q 125/2V
cavity Q 8460
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2E0)/E0 just before the bunch crosses the cavity on itspth
turn. Then the equations of motion are

fk2fk21522paek , ~1!

ek112ek5e@V~kT01tk!2Vg#/E0 , ~2!

where a is the momentum compaction factor,eVg is the
radiation energy per particle per turn, andV(t)5Vg(t)
1Vb(t), with Vg being the generator voltage andVb the
beam-induced voltage.Vb is, in terms of the wake potentia

Vb~ t !52eN (
p52`

`

W~ t2pT02tp!. ~3!

To the leading order inf, the above equations lead to

fk1122fk1fk2152T0
2vs

2fk1
ev0a

2pE0
eN

3 (
p52`

k

fpẆ~kT02pT0!, ~4!

with

vs
25

ev0
2a

2pE0
hV̂ sin cV , ~5!

wherecV is the phase of the cavity voltage relative to t
beam,V̂ is the magnitude of the voltage,Ẇ is the time de-
rivative of W, and vs is the incoherent synchrotron fre
quency. Equation~4! is a homogeneous linear equation
fk . Settingfk5zk, we obtain

z221z2152T0
2Fvs

22
ea

E0
I (

p50

`

z2pẆ~pT0!G , ~6!

where the average beam currentI 5eNv0/2p. The summa-
tion is theZ transform ofẆ.

From now on, we consider the simplest case where th
cavity fundamental mode is the only source of the impe
ance: Fort.0,

W~ t !52k0cosv rest exp~2Gt !, ~7!

where the loss factork0 is the product ofG with the shunt
impedanceRsh . In this case, theZ transform ofẆ is a ra-
tional function ofz; Eq. ~6! becomes

z221z211T0
2vs

25 jk0

ae

E0
T0

2IzF vc

z2zc
2

vc*

z2zc*
G , ~8!

wherezc5ej vcT0 and the complex resonance frequencyvc
[v res1 j G. Additional rf modes add similar terms to th
right-hand side of Eq.~8!. Equation~8! is trivially converted
to a polynomial equation inz,

z~z221z211T0
2vs

2!~z2zc!~z2zc* !

5 jk0

ae

E0
T0

2Iz2@vc~z2zc* !2vc* ~z2zc!#, ~9!

l
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57 3463SPECTRUM OF SINGLE BUNCH LONGITUDINAL . . .
an equation that is valid for arbitrary detuning of the cavi
In the case thatuVT0u!1, to the leading order of this

quantity Eq.~9! is equivalent to

~V22vs
2!~V1D2 j G!~V2D2 j G!5I f ~V!, ~10!

where

f ~V![2j@vc~V2D2 j G!2vc* ~V1D2 j G!#, ~11!

the frequency detuningD5hv02v res , andj[ek0a/T0E0.
Sometimes the detuning angleQ is used in place ofD; the
two quantities are related byD[GtanQ.

The characteristic equation~10! is quartic inV and there-
fore has four solutions. For small current, it gives

V56vs1O~ I ! ~12!

for the beam mode and

V56D1 j G1O~ I ! ~13!

for the cavity mode.
The cavity mode can be understood as follows. When

bunch passes through the cavity, it excites, in addition to
equilibrium voltage with frequencyhv0, a transient voltage
@9# of frequencyv res with damping coefficientG. When
these two components of the voltage act back on the bu
the revolution harmonics of the beam are modulated byD.
The modulated beam oscillation of frequencyhv06D then
feeds back on the cavity leading to the cavity Robins
mode. The cavity voltage component with frequencyv res
can also be excited by noise with a large bandwidth.

We end this section by discussing the symmetry prop
ties of the solutions of the characteristic equation. Since
characteristic equation~10! represents a physical system,
solutions satisfy the reality condition. This implies that ifV
is a complex-valued coherent frequency, then so is2V* .
The solutions appear in mirror-image pairs with respect
the imaginary axis unless they are pure imaginary. The c
acteristic equation must, as a consequence of this condi
have one of the following three forms:

P~V!5~V2V1!~V1V1* !~V2V2!~V1V2* ! ~14a!

5~V2 jy0!~V2 jy1!~V2V1!~V1V1* ! ~14b!

5~V2 jy0!~V2 jy1!~V2 jy2!~V jy3!, ~14c!

where they’s are real andV1 and V2 are not pure imagi-
nary. Form~14a! represents solutions that appear in two co
jugate pairs. One of the pairs, say,V1 and2V1* , will later
be identified with the cavity mode and the other pair with t
beam mode. Form~14b! represents the case where one of
two modes~e.g., the cavity mode!, but not both, has two pure
imaginary coherent frequencies and the other mode
conjugate-pair frequencies. Form~14c! will not be discussed.

III. STABILITY

In this section we discuss the stability of the Robins
modes described by the characteristic equation. In doing
we draw upon the work of Routh@7# that relates the sign o
.
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the imaginary part ofV to the coefficients of the characte
istic polynomial @10,11#. Routh criteria are necessary an
sufficient conditions for stability and are used here to ide
tify all the possible unstable coherent modes.

Stability criteria, conditions that require the imagina
part of solutionsV of the equation

P~V!5~ j V!41a3~ j V!31a2~ j V!21a1~ j V!1a050
~15!

to be positive, are provided by Routh@7#:

a3.0, ~16a!

~a3a22a1!/a3.0, ~16b!

a1~a3a22a1!/a32a3a0.0, ~16c!

a0.0. ~16d!

Applied to the characteristic equation~10!, we have the as-
sociations

a352G, ~17a!

a25D21G21vs
2 , ~17b!

a152G~jI 1vs
2!, ~17c!

a052jI ~G22v resD!1~D21G2!vs
2 . ~17d!

Of the four conditions~16!, two are quickly understood
From Eq.~17a!, the inequality~16a! is trivially satisfied. For
practical reasons, Eq.~16b! is of little concern. Using the
expressions forai in Eq. ~17!, we have2jI 1D21G2.0.
Using vuv numbers, this condition is satisfied unlessI
.250 A; since the ring is operated below 1 A we assume
that inequality~16b! is satisfied as well. We see below th
the remaining conditions~16c! and ~16d! are conditions on
the resistive and reactive Robinson instabilities.

A. Resistive mode

We discuss here the coherent mode that can be uns
for a very small beam current, namely, the well-known
sistive mode. From Eq.~13! the cavity mode is damped a
I 50 by the damping coefficientG; therefore, from continu-
ity, the mode cannot become unstable for very small curr
On the other hand, the beam mode is, from Eq.~12!, neither
damped nor excited at vanishing current. To the leading
der of I , the damping rateV I , V[VR1 j V I , of this mode
can be calculated from Eqs.~10! and ~11! as

V I}I ~2vs
2G21D212v resD!1O~ I 2!, ~18!

with positive proportionality coefficient. The stability cond
tion is

2vs
22G21D212v resD1O~ I !.0. ~19!

For the vuv ring, this givesD.8 Hz, a very small number
since the bandwidth 2G of the cavity resonance is;4
3104/s. This explains why the vuv ring is operated capa
tively ~just like every other electron storage ring.!
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3464 57NATHAN TOWNE AND JIUNN-MING WANG
By routine substitution, the Routh inequality~16c! re-
duces to

2jGI ~2vs
22G21D212Dv res2jI !.0. ~20!

This inequality is seen to be the same as the stability co
tion ~19! for the resistive mode.

B. Robinson condition

We are left with the condition~16d!. This condition is
fairly obvious: If

a050, ~21!

thenV50 is a solution of Eq.~15!. Since vanishingV im-
plies vanishingV I , Eq.~21! is a threshold condition. Chang
ing the current infinitesimally from the threshold current co
responding to Eq.~21!, solving Eq.~15! perturbatively, and
usinga1.0, we find that the stability condition is given b
Eq. ~16d!.

Let us express this stability condition in terms of the d
tuning angleQ. RecallingG5v res/2Q and D5GtanQ, the
stability condition can be written as

S 11
D

v res
D sin 2cV2rS sin 2Q2

1

Q
cos2Q D.0, ~22!

where the beam loading parameter

r[Pradiation/Pcavity5IV̂coscV /~V̂2/2Rsh!.

The Eq.~22! is a slightly modified Robinson condition. I
the terms involvingD/v res and 1/Q in Eq. ~22! are ignored,
we obtain the original Robinson condition

sin 2cV.r sin 2Q.

Sincep/2.cV.0, this mode is stable if the cavity is de
tuned inductively, i.e.,Q andD are less than zero.

IV. COLLISION OF BEAM AND CAVITY MODES

The beam mode and the cavity mode for small beam c
rent I were defined in Sec. II through Eqs.~12! and~13!: The
cavity mode is the mode whose frequenciesVc(D,I ) and
2c.c. approach6D1 j G continuously when the beam cu
rent approaches zero whileD is kept fixed. From the reality
condition of the eigensolutions, a solution atV5D1 j G im-
plies its image solution atV52D1 j G. Similarly, the fre-
quenciesVb(D,I ) and 2c.c. of the beam mode approac
6vs in the same limit. The same definition can be used
a finite beam current without ambiguity provided the coh
ent frequencies of the beam mode and the cavity mode
not become degenerate when the current is increased.
find below that there is one and only one such collision po
of the modes~at a practical beam current! and the collision
can occur only when the cavity is capacitively detuned.

We discuss form~14a! of Sec. II. Change the notatio
V1→Vc and V2→Vb to indicate, respectively, the cavit
mode and the beam mode. Comparing Eqs.~14a! and ~15!,
we have
i-

-

-

r-

r
-
o
e

t

Vc2Vc* 1Vb2Vb* 5 ja3 .

Since a352G, this relation is equivalent to the following
simple but useful relationship between the imaginary parts
the mode frequencies:

VcI1VbI5G. ~23!

To see when the mode collision happens, let us ass
that Vb5Vc5V̄5V̄R1 j V̄ I when (D,I )5(D̄, Ī ); we want
to solve for D̄, Ī , and V̄. We first note thatV̄ I can be
obtained simply from Eq.~23!. SinceVbI5VcI5V̄ I at the
collision point, we have, from this equation,

V̄ I5G/2. ~24!

To go on, let us write Eq.~14a! at the collision point as

P~V!5~V2V̄!2~V1V̄* !2. ~25!

Denoting ā n[an(D̄, Ī ) for n50, 1, 2, and 3, we also hav
the barred form of Eq.~15!,

P~V!5~ j V!41 ā3~ j V!31 ā2~ j V!21 ā1~ j V!1 ā0 .
~26!

Comparing the coefficients of Eqs.~25! and ~26!, we obtain
four equations for theā ’s in terms ofV̄ and V̄* . Elimina-
tion of V̄ and V̄* from these equations leads to two co
straints for the two variablesD̄ and Ī :

~j Ī 1vs
2!22 ā050 ~27!

and

D̄25vs
212j Ī . ~28!

For the vuv ring, these two equations give two solutio
with positive current. The first one isĪ 520.27 mA and the
other is an impractical 1011 A. We disregard the latter solu
tion. For the former solution,D̄570 208.6 rad/s. Compar
this with vs570 208.0 rad/s. The near identity of these tw
quantities is the result of the fact that the ratio of the te
2j Ī of Eq. ~28! to vs

2 is of the order ofG/v0, which is
generally very small for an electron ring. If we ignore th
term, then the equation gives

D̄5vs . ~29!

Continuation of this line of reasoning gives, in addition
Eqs. ~29! and ~24!, the following results about the collision
point:

uV̄u5vs ~30!

and

Ī 5G2vs/2jv res . ~31!

The results of this section are crucial for visualizing la
the behavior of the beam and cavity modes when the ca
is detuned capacitively.
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57 3465SPECTRUM OF SINGLE BUNCH LONGITUDINAL . . .
We were able to observe the mode collision in the v
ring and verify that its location is close to the values det
mined from Eqs.~29! and~31!. The responses of the beam
a function of frequency to longitudinal excitation by a broa
band cavity were taken at different detuning and curre
approaching the collision point. Figure 2 shows a sam
data set taken at a current well above the collision po
where the real parts of the beam- and cavity-mode frequ
cies are well separated; the beam- and cavity-mode r
nances are on both sidebands on either side of the 10-
offset from the rotation line.~There is also a quadrupol
resonance at about 20-kHz offset.! The collision must occur
when the widths~and heights! of the resonances are simila
In Fig. 3 traces taken from different data sets having diff
ent detuning and currents approaching (D̄, Ī ) are assembled
In the traces where the beam- and cavity-mode resona
are not clearly separated, they were confirmed to be pre
by inspection of the original data sets, e.g., Fig. 2. Figur
shows the merging of the two resonances near 10-kHz of
a value nearvs inferred from the location of the quadrupo
resonances and from the reduced cavity voltage~73 kV!.
Although data were not taken at beam currents below
mA, the collision appears to be between 26 and 21 mA.

V. GRAPHIC REPRESENTATION

We discuss in this section the parametric (VR ,V I) plot of
the solutions of Eq.~15!. For each plot,D ~or equivalently
Q) is fixed and the beam currentI is the parameter. Thes
plots will be referred to as the solution curves or the solut
loci. The examples considered are based on the vuv
parameters given in Table I.

A. Inductive caseQ<0

It suffices to plot three examples corresponding toD
52p323.4, 212.8, and228.0 kHz (Q5247°, 276°,

FIG. 2. Sample data set of beam responses showing the
modes of coherent motion at a 52-mA beam current. The ca
detunings for the traces are 13.1, 11.6, 10.0, and 8.8 kHz from
to bottom, respectively. One resonance is offset less than 10
from the rotation line and becomes more distinct as the detun
becomes more negative. The other resonance appears above 1
from the rotation line and becomes sharper as the detuning bec
more positive. The resonances have similar widths and heigh
the trace second from the bottom; similar traces at different curr
were assembled to form Fig. 3.
v
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and283°, respectively! in Fig. 4 since these curves are re
resentative of the inductive case. The fine-dashed~leftmost!
pair of curves corresponds toD52p323.4 kHz, the
coarse-dashed~center! curves correspond toD52p3
212.8 kHz, and the uneven-dashed~right-most! curves cor-
respond toD52p3228.0 kHz. The solid horizontal line in
the figure corresponds toV I5G. The cavity-mode frequen
cies ~the broken lines on the upper half plane! fall on this
line at I 50 and move upward~become more damped! with
increasing current. The beam-mode frequencies~the broken
curves on the lower half plane! start atvs and move down-
ward ~become increasingly unstable! with increasing current.

o
ty
p
z
g
kHz
es
in
ts

FIG. 3. Observation of the collision of the beam and cav
Robinson modes in the vuv ring. From top to bottom, the five tra
have beam current and detuning (I ,D/2p)5(58 mA, 10.3 kHz),
(42 mA, 11.8 kHz), (31 mA, 11.3 kHz), (26 mA, 11.0 kHz), an
(21 mA, 10.8 kHz). Although the resonances are not clearly se
rated as they are in Fig. 2, each of the traces was taken from a
set similar to that figure where the modes were easily distinguis
at other detunings. In this figure the final stage of the collision
shown where the two modes merge together at a collision p
between 26 and 21 mA.

FIG. 4. Parametric plots on the complex-V plane of solutions of
Eqs. ~10! and ~11! for the NSLS vuv ring with an inductively de
tuned cavity. The beam current is varied along each curve;
arrows give the direction of increasing current. The solid horizon
line corresponds toV I5G, the damping rate of the cavity rf mode
The broken curves with negative damping rates are the beam-m
frequenciesVb and the others are the cavity-mode frequenciesVc .
The three beam-mode, cavity-mode pairs are, from left to right,
D52p323.4,212.8, and228.0 kHz.
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3466 57NATHAN TOWNE AND JIUNN-MING WANG
The condition~23! requires that the two modes cannot bo
become more unstable with increasing current. It is also
portant to note that the cavity- and beam-mode frequen
are separated from each other by a gap located at 0,V I
,G. This explains why a collision point with negativeD was
not found in Sec. IV.

B. Capacitive caseQ>0: Confluence curves

It was seen in the Sec. IV that there is a unique pair
mode collision pointsV̄ and2V̄* that are not pure imagi
nary. Such a mode collision occurs only for capacitive d
tuning D̄5vs.0 and the current is given by Eq.~31!. The
solution curves that pass through the collision pointV̄ are
referred to as confluence loci or confluence curves. In te
of the detuning angle,D̄[GtanQ̄.

For the vuv ring,Q̄574.4°,D̄5vs52p311.2 kHz, and
Ī 520.3 mA. In Figs. 5 and 6 the dashed curves are
confluence curves and the central dots represent the coll
point (V̄R ,V̄ I). The dash-dotted lines again correspond
V I5G.

These pictures require some additional explanation.
confluence curves divide the regionVR.0, V I.0 in the
complex plane into four regions. ForD.D̄ ~solid curve of
Fig. 6!, the beam mode occupies the lower-left quadrant
the cavity mode occupies the upper-right quadrant. When
beam currentI increases, the damping rateV I of the beam
mode increases while that of the cavity mode decreases
that the condition~23! is maintained. The real part of th
cavity-mode frequency increases with increasing current
that of the beam mode moves towards and eventually
lides with its own image on the imaginaryV axis. ForD,D̄
~solid curve of Fig. 5!, the situation is just the opposite: Th
beam mode occupies the lower-right quadrant and the ca
mode occupies the upper-left quadrant. The locus of the c

FIG. 5. Confluence curves on the complex-V plane for the
NSLS vuv ring where the cavity detuningD5D̄52p311.2 kHz
~dashed curves! and beam- and cavity-mode coherent frequenc
for D52p33.2 kHz ~solid curves!. The beam- and cavity-mod

collision point is the large central dot atI 5 Ī 520.3 mA. The
cavity-mode frequency approaches the collision from above, s
ing at V5vs1 j G, while the beam-mode frequency approach
from below, starting atV5vs . The small dots mark beam-curren
increments of 10 mA. The cavity damping rateG is marked with the
upper broken line at a damping rate 19.6/ms.
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ity mode moves towards the imaginary axis with increas
current and eventually reaches the imaginary axis collid
with its own image. The pure imaginary collision points a
also represented by dots in the figures.

We now consider the case corresponding to Fig. 5 wh
the beam current is further increased after the mode collis
on the imaginary axis; the case of Fig. 6 is similar. After t
collision, the two coherent frequencies corresponding to
cavity mode both become pure imaginary, no longer mir
images of each other; the characteristic polynomial will ta
the form ~14b!. The two pure imaginary coherent modes a
ter collision are depicted in Fig. 7; the black dot correspon
to the collision point on the imaginary axis. We see from th
figure that one of the coherent frequencies vanishes whI
;145 mA. This is the threshold current corresponding to
Robinson condition~21!. WhenD.D̄, it is the beam mode
whose coherent frequency becomes pure imaginary for la
current and the threshold current for the reactive instability
again given by Eq.~21!.

Figure 8 plots the Robinson condition~21!, D againstI .
The dash-dotted line corresponds toD5D̄5vs . The part of

s

rt-
s

FIG. 6. Confluence curves on the complex-V plane for the
NSLS vuv ring where the cavity detuningD5D̄52p311.2 kHz
~dashed curves! and beam- and cavity-mode coherent frequenc
for D52p317.7 kHz ~solid curves!. The small dots mark beam
current increments of 10 mA. The cavity damping rateG is marked
with the upper broken line at a damping rate 19.6/ms.

FIG. 7. Cavity-mode damping rate as a function of curre
showing a collision that occurs on the imaginary axis~large dot!,
after which the conjugate mode frequencies split to form two
equal imaginary frequencies~dashed line!. The detuningD52p
33.1 kHz.
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the curve under the dash-dotted line corresponds toD,D̄
and therefore gives the threshold condition for the cav
mode. The threshold condition for the beam mode is giv
by the curve above the dash-dotted line. We see from
figure that the lowest threshold current;145 mA for the
cavity mode occurs atD;2p33 kHz and the lowest thresh
old current for the beam mode;280 mA occurs atD5D̄
52p311.2 kHz.

VI. CONCLUSION

In this paper we have described the properties of the
gitudinal dipole modes when the impedance responsibl
that of a cavity resonance mode and made a distinction
tween the beam Robinson mode and the cavity Robin
mode. The behavior of each of these modes was describ
terms of the solution locus corresponding to a givenD and
varying I . In principle, there is a cavity mode associated w
each cavity rf mode in the ring, although only rf modes w

FIG. 8. Threshold conditiona050 for the reactive Robinson
instability constraining currentI and detuningD. The dash-dotted
line corresponds toD5D̄. The shaded region is unstable.
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damping rate and detuning of ordervs couple to the beam
sufficiently strongly to produce observable Robinson mod

For inductive detuning, we showed that the beam mo
and the cavity mode do not mix since the beam mode oc
pies the regionV I,0 in the complexV plane while the
cavity mode occupies the regionV I.G.0. For capacitive
detuning, we showed where a collision between the be
and the cavity mode~total degeneracy! occurs and showed
how the confluence of the beam- and the cavity-mo
solution loci around the total degeneracy point divides theV
plane into beam- and cavity-mode regions. Data from
vuv ring were presented that show the mode collision ve
fying that it occurs at approximately the theoretical curre
and detuning.

Although the stability thresholds of both the beam and
cavity modes, in different kinematic regions, are given by
same condition~21! and instability is not an immediate prob
lem, it is important in the vuv ring to choose an appropria
range of detuning so that the coherent mode does not c
excessive perturbation on the photon beam. It should
noted that the coherent modes can carry on forced osc
tions driven by the ever present noise even below the in
bility current threshold and thus affect the photon beam qu
ity, particularly in a ring with noisy rf systems.

In a ring with a high-Q rf system, the coupling betwee
the beam synchrotron motion and the cavity resonance m
is intimate, even at low current. As such, even though
perturbative method can be useful for estimating the thre
old of a coherent instability, it is not very useful in the ca
culation of the actual coherent frequency. Direct solution
equations like Eq.~6! or ~10! is necessary for determinin
the mode frequency reliably.
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